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The effect of a magnetic field on the flow of a 
conducting fluid past a body of revolution 
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The problem described by the title is investigated when both the magnetic 
field and the streaming motion of the fluid at infinity are uniform and parallel to 
the axis of symmetry of the body. The flow pattern depends on three parameters, 
the Reynolds number R, the magnetic Reynolds number R, and the Hartmann 
number M .  In  this paper it is assumed that M 9 1, M B R, M 9 R, (no other 
restrictions on the parameters are imposed, so that R and R, need not be small). 
The flow pattern then consists of an undisturbed uniform stream outside a 
cylinder circumscribing the body with generators parallel to the stream. Inside 
this cylinder the fluid is at rest. The leading term in the expression for the drag 
on the body is obtained. 

1. Introduction 
In  an earlier paper (Chester 1957) the author considered the effect of a mag- 

netic field on the flow of a conducting fluid past a sphere. It was shown that the 
magnetic field, assumed to be parallel to the uniform stream at infinity, produces 
a body force which opposes the natural tendency of the fluid to flow round the 
body and thereby increase the drag. An expression for the drag was obtained as 
an expansion in increasing powers of the Hartmann number. 

The object of the present investigation is to consider the same problem, but 
for large values of the Hartman number. Because of the insensitivity of the flow 
to the detailed shape of the body, it is possible to generalize the argument to deal 
with an arbitrary body of revolution. 

2. Formulation of the problem 
The fluid is assumed to be incompressible, viscous and conducting. It flows 

steadily past a body of revolution whose axis defines the x-axis of a system of 
Cartesian co-ordinates with origin inside the body. Both the flow direction and 
the magnetic field are parallel to the x-axis at infinity. 

The equations to be solved are then, with the usual notation for electromagnetic 
quantities (measured in M.K.S. units), 

V’AH = j = g(E+pV’hH), V’.H = 0, V‘AE = 0, (1) 

(2) 

(3) 

V’ .V = 0, 

p(V‘ . 0’) V’ = - V’p’ i -pvVT’ +,uj AH, 
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where V', p', p, v denote respectively the velocity, pressure, density and kine- 
matic viscosity. The prime has been used here so that the same symbols without 
the prime can later be used to denote non-dimensional quantities. 

We note first that, because of the symmetry of the problem, the vector V A H 
has zero divergence and hence, by equations (I), 

V'.E = 0, V'AE = 0. (4) 

The electric field is thus identically zero, since this is a solution of (4) which 
violates no boundary conditions at the body or at infinity. 

Now let U be the speed of the uniform stream at infinity, and let the body lie 
within a sphere of radius a and centre at the origin. The space co-ordinates may 
then be made non-dimensional with the factor a-l, and the pressure and velocity 
by the relations 

(5) 
a 

p = - (p' -pL), v = V'IU, 
PVU 

where p: is the pressure at infinity. 
It follows, from the fist of equations (I), that 

R,VAH = VAH,  (6) 

where R, = Uapcr = magnetic Reynolds number. (7) 

If the left-hand side of (6) were neglected, H would also satisfy equations (4). 
If, in addition, the permeabilities of the fluid and the body were equal, the mag- 
netic field would be uniform and parallel to the x-axis. We thus write 

H = & H(i + R,A), (8 )  

where the first term is taken to be dominant. The validity of this assumption will 
be discussed later. For the moment we take H = &Hi approximately, and 
equation (3) then reduces to 

R(V . V) V = - Vp + V2V + M2(V A i) A i, (9) 

where R = Ua/v = Reynolds number, (10) 

M = ,uHa(cr/pv)) = Hartmannnumber. (11) 

Note that the Hartmann number, like the Reynolds number and magnetic 
Reynolds number, is essentially non-negative. 

Equation (9) is further simplified by neglecting the term on the left-hand side. 
The techniques of this paper are not sufficiently refined to discuss the precise 
condition for which the neglect of the convective terms is valid. However, in 
the paper immediately following, a much more careful analysis of the whole 
flow field is made for the special case of a circular disk. There it is shown that the 
approximation is justified provided that M 9 R. (This is also the condition 
required when M < 1.) While this is not completely general it is also not so 
restrictive as might at first appear, for it is also found that the flow field is in- 
sensitive to the detailed shape of the body when M is large. The uniform stream 
is undisturbed outside an elongated cylinder circumscribing the body; inside the 
cylinder the fluid is substantially at rest. The thickness of the shear layer at the 
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surface of this cylinder is O(M-3) near the body and gradually thickens towards 
far distant points, where the contour of the cylinder becomes less well defined 
and the flow merges into the pattern of a uniform stream at infinity. 

3. General solution of the equations 
With the indicated simplifications, (2) and (9) now give 

v . v  = 0, 

-Vp+V2V+M2(VAi )Ai  = 0. 

These have the particular solution (Chester 1957) 

V = i + eMxV#, + e-MXV#,, (14) 

where 

Equations (14) and (15) contain the most general solutions for p ,  and u, the 
x-component of (V - i ) .  For it is easily deducible from (13) and (14) that 

a 
V ' ( P - M U ) + M G ( P - M U )  = 0, (19) 

so that ( p  + M u )  and ( p  - Mu)  can be identified with MeMx#,, and - Me-Mx#,, 
respectively. Thus the most general solution may contain extra terms which 
contribute t o  the velocity components perpendicular to the x-axis. Since such 
terms must satisfy the continuity equation, they may be expressed in the form 
V X A  i .  Since also the conditions of symmetry require that there be no component 
of vorticity in the x-direction, x must be a solution of the two-dimensional Lap- 
lace's equation. This solution is to be regular at all points in a plane perpendicular 
to the x-axis and so can be at most a constant, which has no significance in the 
velocity field. Equations (14) and (15) therefore represent the complete solution. 

It also follows, from (l), (6) and (8) that the equations satisfied by A outside 
the body are approximately 

with the solution 
V A A  = V A i ,  V . A  = 0, (20) 

A = -M-leMxV#l+M-le-MxV#g+V#',  (21) 
where V'#' = 0. 

Inside the body, where V A A = 0, V . A = 0, A is a harmonic function. This 
function, together with #', is determined by the continuity of A on the surface 
of the body. Now the first two terms in (21) are at most O(M-1) for, as will be 
shown, each term in (14) for the velocity is at most O( 1). It follows that A itself 
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is at most O(M-l)  and hence that the approximation implied by taking the mag- 
netic field to be Hi is valid provided that M % R,. 

The assumptions made also imply that the Alfven wave speed (,u*H/pd) is 
large compared with U ,  for their ratio is M2/RR,. The effect on disturbances 
associated with this speed may be compared to the effect on compressive dis- 
turbances of the assumption of small Mach number. 

4. Solution for large Hartmann number 
To obtain the solution for M >> 1, it is sufficient to note that p and each of the 

components of (V - i )  can be written as the sum of two terms satisfying respec- 
tively the equations 

(22) 
a1c. 
ax V2$,-M-l= 0, 

a1c. V2$2+M---2 ax = 0. 

The asymptotic behatiour of solutions of the first equation has already been 
discussed in the literature (Oseen 1927; Stewartson 1956) with reference to 
Oseen’s equation for viscous flow past solid bodies, and the second equation is 
also amenable to similar treatment. We follow here the interpretation given by 
Stewartson (1956) of Oseen’s original argument. 

Let 

$2 = A2(y’, z’), ?!b aa = MB,(y’,  z’), (25) 

at the point (x‘, y’, z’) of the body, where a/& represents differentiation along the 
outward normal. (It will appear later that the normal derivatives can be O ( M )  
on the body.) Then, by a simple extension of Kirchhoff’s solution of the wave 
equation, we can write 

where (x’,y’,z’) is a point on the body where the outward drawn normal has 
direction cosines (I, m, n), and 

R2 = (x -x’)2+ (y-yf)2+ (2 - d ) 2 .  

Consider first the asymptotic behaviour of 

for large M .  The integrand is exponentially small unless (y - Y ‘ ) ~  + (z  - z’)2is small. 
This implies that the integral itself is exponentially small unless a line through 
(x, y, z )  parallel to the x-axis cuts the body. If it  does cut the body at a point 
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(5, y, z )  then the sensible contribution to (28) comes from the integral over that 
part of the body in the neighbourhood of this point, together with similar con- 
tributions from the other points of intersection. The contribution from one point 
of intersection may then be written 

where I is also a function of y and z, and the integration can be taken over the 
infinite plane Zx' + my' + nz' = Z f ;  +my + nz.  

With the transformation 

2' - f; = - ( 1  - 12)* r sin 8 + ( 1  - 12) (x - f;), 

yf-y = ~ +- - lm(x-f ; ) ,  
(1 - 1 2 ) t  ( 1  - 12)+ 

z ' -z= +-- n&x - 0, 
(1 - -12 )*  ( 1 - - 1 2 ) *  

n r  cos 8 mlr sin 8 

- mr cos 8 nlr sin 8 

the integral (29) becomes 

dr Io2" exp & M [ P ( ~  - g) + ( 1 - IS)* r sin 8 

- {r2 + Z2(x  - f ; )2 }+]  de 

[~T(B~-ZA,)/~Z~ for x > f;, I 

Similarly, the contribution to 
a (e&M(Z-x'-R) /pl% R as 

is sensibly 

0 for x > f;, 
- 4nA1 sgn ZeM~2(x-~ for x c f;. 

Similar contributions come from the other points of intersection. The final 
result is that $, tends exponentially to zero outs is 'a  cylinder circumscribing 
the body with its axis along the x-axis. Inside this cylinder on the downstream 
side of the body (x > 0) the asymptotic form of $, is independent of x so that 

$1 = $l(Y,Z), 



464 W .  Chester 

and on the upstream side (x < 0) 

where is the value of x at the point on the body nearest the point (2, y, z), 
for which y = y', z = z'. 

The argument for $, is similar and only the final results are quoted. Inside 
the circumscribing cylinder @2 = $,(y, z )  on the upstream side, and on the down- 

It is now a simple matter to write down the asymptotic forms of the velocity 
components and the pressure. If we consider only the perturbed field, all the 
components are asymptotically zero outside the circumscribing cylinder. Inside 
this cylinder on the downstream side of the body 

M-lp = u, - u1 e - M W - 0 .  

V = i + V + V e-M12Q-0, 0 1  

where u,, u1 are the x-components respectively of V,, V,, these vectors being 
functions of y and z only. (Because of the symmetry of the flow they are in fact 
functions of y2 + z2 only.) Since V satisfies the continuity equation ( 1 2 ) )  the same 
must also be true of V, and V, exp { - MP(x - ()} separately. If V, is to be regular 
on the axis it cannot satisfy both the continuity equation and the requirements 
imposed by symmetry unless V, A i is zero. Also on the body the boundary con- 
dition V A i = 0 must be satisfied and this now implies V, A i = 0. The continuity 
condition then requires that V, itself be zero. Finally the remaining boundary 
condition at the body (on the x-component of the velocity) is satisfied if u,, = - 1. 

Similar arguments apply on the upstream side of the body, the only difference 
being that the contribution from the terms corresponding to $, and $2 are inter- 
changed. Since the boundary conditions are unchanged, the velocity fields on 
the upstream and downstream sides of the body are identical. But, because of 
the interchange of the roles of $, and $2, the pressures on the two sides of the 
body are equal in magnitude but of opposite sign. 

The following description of the flow field now emerges.* Outside the circum- 
scribing cylinder the uniform flow field parallel to  the axis of the body continues 
unchecked. Inside the cylinder the fluid is stagnant, the non-dimensional pres- 
sure p is equal to M on the upstream side and - M on the downstream side. The 
drag is clearly given by 

D 2MA 

or D = 2pHlJ( r~p~)#A,  

where A is the cross-sectional area of the circumscribing cylinder. (Note that 
Dlpva U and A/a2 are the non-dimensional representations respectively of the 
drag and cross-sectional area corresponding to the pressurep = ap'lpvU.) 

* The result is qualitatively similar to that of Stewartson (1960) for a similar problem 
in which the fluid was perfectly conducting and inviscid. 
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The discontinuity in velocity at the surface of the cylinder arises from the 
fact that the arguments used to obtain the asymptotic behaviour of $l and $2 

break down wherever I (the x-component of the unit normal to the body) is zero. 
This discontinuity is discussed in greater detail in the following paper where it is 
shown that it is an approximation to a region of rapid transition which, however, 
becomes more diffuse as x+ ~f: co. It will also be shown that this thickening of 
the shear layer at far distant points explains a further anomaly of the present 
analysis, namely that the boundary condition on the velocity at infinity is not 
satisfied inside the circumscribing cylinder. It is in fact more accurate to picture 
the cylinder as being of length O ( M )  and the uniform stream being dominant 
everywhere at distances large compared with O( M ) .  

One further point requires comment. The above argument is sufficient to deal 
with the upstream and downstream sides of the body. However, it may happen 
that a line parallel to the x-axis cuts the body in more than two points so that a 
pocket of fluid appears in the vicinity of the body. If one such pocket is described 
by g1 < x < g2, then the asymptotic form of the velocity vector there will be 

o f  1 2 V = i + V V e-MZ’(z-51) + V eMRX-53. 

Moreover V, will contain contributions from integrals over planes for which 
x > 6 and x < C. These contributions to u, must now be known separately before 
an expression for the pressure can be deduced. The present theory does not 
predict this, and the pressure is indeterminate unless some further condition is 
invoked such as continuity at  the boundary of the pocket. But as far as the 
drag is concerned, it is sufficient that the pressure be independent of x, and thisis 
so since it is easily shown that VOhi = V, = V, = 0. 
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